
Retcon: A Least-Commitment Story-World System

Ian Horswill
1

1 Northwestern University, 2133 Tech Drive, Evanston, IL, 60208, USA

Abstract
Retcon is an experimental interactive narrative engine that allows writers to author stories in

which some aspects of the overall story, such as the tone, genre, and character relationships,

can be chosen incrementally by the player. Stories are authored as a set of fragments (aka

storylets) tagged with their story-world assumptions. The system tracks the active assumptions

and removes from consideration any fragments that contradict the established story world. This

allows the player some degree of co-authorship, and allows her to explore the possibility space

of different stories afforded by story worlds.

Keywords 1
Interactive narrative, procedural generation, logic programming, constraint satisfaction, SAT

Overview

Retcon is an experimental interactive narrative

system that allows players to make choices not

only about plot progression, but about genre,

themes, world building, and other issues of overall

story design. We will refer to these issues

collectively as story state: the changing set of

design decisions during the writing process, as

opposed to the state of the characters and world

within the story, which we will refer to as world

state.

Retcon does not allow players to design a story

from scratch. It allows authors to leave elements

of the story open, as a GM (game moderator)

might in designing a scenario for a tabletop RPG.

This gives players the ability to make limited

design choices while experiencing the story, and

replay to explore the implications of different

choices.

The author designs the story as a set of

narrative fragments, aka “storylets” [1], tagging

them with the story-world elements they

presuppose: character personalities, character

relationships, genre, tone, theme, etc. The author

then provides a set of constraints on what

combinations of elements are allowable.

The Joint Workshop Proceedings of the 2022 Conference on

Artificial Intelligence and Interactive Digital Entertainment,

October 24–25, 2022, Paloma CA, USA
EMAIL: ian@northwestern.edu

©️ 2020 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

As with other similar systems, retcon starts

with a story fragment, then repeatedly allowing

the player to choose a valid next fragment.

However, as fragments are adopted, retcon tracks

the set of story-state assumptions they make.

These, together with the constraints, define a set

of possible story worlds consistent with the tale

thus far. The system uses a SAT solver to

determine which candidate fragments are

consistent with the story so far, discarding

inconsistent ones. The player then chooses from

a random selection of viable fragments, the

system prints the fragment’s text, adds its

assumptions to the story world, and repeats the

process.

Example

The following are fragments from Nana, a

narrative prototype being built using Retcon, in

which two characters, Jaime and Joey are driving

to visit Nana, the family matriarch. The

character’s genders are left unspecified, as is the

relationship between them, which of them are

related to Nana, and whether Nana is an

antagonist. The constraints:

[AtLeast 1 [Family jaime]
 [Family joey]]

[Not lovers] <- [Family jaime]
 [Family joey]]

stipulate that at least one of the protagonists must

be a blood relation of Nana and that if they both

are, they’re not lovers. The rules:

lovers <= gay_couple
lovers <= straight_couple

state that, for the purposes of the story, the

protagonists are lovers if and only if they’re either

a gay or a straight couple.

Now consider the fragment in which the

protagonists remember being disciplined by Nana

as children:

World smoking_weed
 [[Family jaime] [Family joey]].
Text smoking_weed:
 "Remember when we were kids and

 Nana caught us smoking weed?"
 "Yes, and so does my butt."
[end]

The World declaration states that the

smoking_weed fragment presupposes that both

protagonists are blood relations of Nana. Contrast

this with this fragment, which assumes they are a

gay couple and Nana is a homophobe:

World homophobe
 [[Homophobe nana] gay_couple].
Text homophobe:
 "Don't worry. Nana's not so

 bad. She's just a little
 ‘old world.’"

 "You mean she's a homophobe."
 "A <i>polite</i> homophobe."
 "I feel so much better."
[end]

These two fragments cannot occur in the same

story world. The first assumes the protagonists

are blood relations. The second states they’re a

gay couple; that implies they’re lovers, which

implies one of them is not a blood relation,

although it does not imply which. Retcon can

detect this kind of narrative contradiction.

In this paper, I will motivate the work by

discussing the distinction between story state and

world state. Then I will describe the system in

technical detail. Finally, I will discuss the

system’s limitations: how it can and cannot be

scaled.

Story State

Stories change in both the writing and the

telling.

Most obviously, the story world changes as its

characters move through it. They move through

the space of the world and change it. They buy

things, eat things, or perhaps burn down the

occasional building. They acquire, achieve, and

abandon goals and other involvements. They

react to things, have feelings, and undergo

personal transformation. This is the kind of story

state that a character simulator would typically

represent and reason about. It tracks the causal

evolution of the story world over the story

timeline as actions and other events occur within

the story. For the purposes of this paper, we will

call this world state: the state within the story

world as it changes over time within the story.

But stories and story worlds can change in

other, more profound ways during writing. A

story intended to be a romance can become a

comedy or a ghost story. The setting can change

cities or time periods. Themes can be added or

removed. Character backgrounds and

personalities can be radically revised. Characters

initially conceptualized as lovers might become

platonic childhood friends. Tertiary characters

can be promoted to major characters when they

turn out to be more interesting than the existing

characters. The primary antagonist of the

television series Twin Peaks [2] was a stage hand

accidentally shown on camera who was then

written into the series.

For want of a better term, we’ll call this other,

more nebulous, state story state. One could

alternatively call it “design state” or just “design”

or “story”. We will call it story state here to

emphasize its changing nature and because it’s a

literal state variable in retcon.

Story state is the aspects of the design that

change in real time but not in story time. The

boundary between story state and world state is

blurry. Moreover, they aren’t independent; the

story state determines the state space of the world

state, the initial state of the story, and the

prehistory of the story world.

In Star Wars [3], the protagonist Luke

Skywalker moves from location to location over

time, starting at his family farm on Tatooine, and

moving to Yavin 4 by way of various other

locations, mostly space ships. His location is

world state that changes through the story.

However, the fact that he grew up on Tatooine,

that Tatooine is a desert planet, or even that there

is a planet Tatooine is story state. It is static and

unchanging within the frame of the story but

evolves during the writing of the story.

It has been suggested that the story state/world

state distinction is equivalent the fabula/syuzhet

distinction. Although that doesn’t match my

understanding of the latter distinction, there may

be conceptualization of fabula that are equivalent

to story state. To the extent that syuzhet is a series

of events within the story world, those events can

conceptualized as state transitions within the

world state, but they are neither world states

themselves, nor the world state space. To the

extent that fabula is also conceptualized as a set

of events, it similarly would ben neither world

state nor story state. However, to the extent that

fabula is conceptualized as something broader,

such as a set of themes or general story material,

it may overlap with story state.

Serial storytelling

While conceptually distinct, world state and

story state nonetheless evolve together during the

writing process, with the writer regularly

changing one to solve some problem with the

other.

In a novel, film, or a typical narrative game,

the story state evolves as the writer designs the

story. Once the story is written, however, the

story state becomes fixed. The audience, however,

only comes to know the story state through the

telling of the story. She learns the story world in

piecemeal fashion as it is disclosed by individual

story events. Any aspect of the story world not

fixed by the story itself is left open to

interpretation and interpolation by the audience,

regardless of the author’s intent. There is therefore

play (in the sense of mobility) in the story world.

This play within the story world is leveraged

in the writing of serial genres such as television,

western comics, and manga. In serials, the story

state continues to evolve as each new episode is

written. A writer can add new characters and

backstory provided her changes are consistent

with the events already portrayed. These changes

to the story world are treated as if they had always

been true.

Improvisational storytelling

The extreme case of real-time evolution of

story state is improvisational story telling. In

improvisational theatre and table-top roleplaying

games (TTRPGs), players are also writers. Any

player can inject new material into the story state

at any time. The play in the story is then not only

play in the mobility sense but in the ludic sense.

Again, the primary constraint on new story

state is narrative consistency: no changes can be

made that violate events already play.

State in digital games

Digital narrative games, especially AI-based

narratives, often maintain detailed models of

world state. If there is a set of possible states the

world can be in, the systems most often know the

exact, specific state the world is in. Emergent

narratives [4]–[6] must know the exact world state

in order to forward-simulate the world. Reactive

planner architectures [7], [8] similarly need the

full world state to run the characters. Storylet

systems [1] also assume they know the exact

world state so that they can determine which story

fragments are runnable at any given time.

The cost of the system knowing the exact

world state is that it must commit to that world

state. It has very limited latitude to change the

state to suit the needs of the plot or the interests of

the player.

Planning-based systems [9] need only model

the specific world state elements involved in the

plan. But so far as I’m aware, only Robertson’s

[10] system attempts to minimize state

commitment. It can compensate for unexpected

player behavior by retroactively changing the

world state, provided those changes don’t

contradict anything observed by the player. It

does for world state what Retcon does for story

state.

By contrast, most digital narratives do

relatively little reification of story state. They are

like films or novels in the sense that there is a

fixed story world within which one can play. One

cannot change the story world as a whole beyond

a certain amount of character customization and

content selection.

Story state in TTRPGs

Table-top roleplaying games (TTRPGs) are

situated in an opposite corner of design space. In

these games, a set of human players, possibly

including a special game moderator (GM) player,

collaboratively improvise a story. Because any

world simulation is performed by the human

players, it’s infeasible to model the complete

world state; the cognitive load would be

overwhelming.

While this makes certain kinds of gameplay

infeasible, it affords greater flexibility in

storytelling. It solves a number of technical

problems, such as allowing a GM to simply create

replacement NPCs out of whole cloth if a plot-

relevant NPC is killed or incapacitated. But it also

affords a great deal of collaborative freedom. If a

player wants her character to be struggling with

alcoholism, she can just decide that independent

of the original scenario design. At the same time,

if the GM has written an alcoholism subplot into

the scenario and that’s a trigger topic for another

player, the GM can generally adapt things on the

fly to remove it. Indeed, games often begin with

discussions among the players about triggers, play

style, narrative tone and even genre. And a good

GM can improvise to adapt the story to the

parameters the players agree to.

This flexibility also affords interesting game

mechanics. The “aspect” system of Fate [11] is

perhaps the best example of this. Aspects are

arbitrary story world facts asserted by players;

they are true by fiat. The game provides

mechanics for introducing new aspects into the

game world. If you’re in a firefight in a

warehouse, you can roll to introduce the aspect

that there are oil drums in the building. If you

succeed, you can set fire to them, either as a

diversion, a barrier, or a weapon. The

“preparedness” skill of the GUMSHOE system

[12] is another example of a mechanic for

changing the story world. It allows the players a

limited ability to retroactively declare their player

had planned for some contingency, optionally

even including a narrative flashback describing

the preparations. This saves the narrative dead

time of players doing the kinds of detailed

planning they would do in real life but that always

happens off stage in narrative because it’s tedious

to listen to.

There are limits to the ability to change the

story world in these games. As always, story state

changes must be tone and genre appropriate and

logically consistent with any story events that

have already been portrayed. A player can’t

retroactively declare their character to be a ninja

if we’ve already played a scene in which they

were a helpless librarian, short of major

complications in the story world such as the

multiverse of Everything, Everywhere, All At

Once [13]. Introducing an AR-15 rifle into a

Dungeons and Dragons™ game, or an elf into a

science fiction game would generally not be

considered genre appropriate and would at least

require buy-in from the table.

These kinds of changes to story state are

practical for TTRPGs because the simulation is

being performed by human players with human-

level intelligence. They can easily decide what

kinds of changes would or would not contradict

the narrative.

Simulating this kind of gameplay in a digital

game is well beyond current AI capability.

However, there is a clear opportunity to expand

the aesthetic possibilities of digital narrative by

implementing limited subsets of this kind of

narrative play. Retcon is one attempt to do this.

Retcon

Retcon is a first attempt to duplicate a few of

the affordances of TTRPGs in a digital narrative.

It does not allow players to change the historical

world state of the game, as does Robertson’s

system. Nor is it generative enough to allow

players to create new facts to inject in the story

world. However, it does allow the author to leave

open specific story choices about genre, tone,

style, and the nature of the characters. Players

can then determine these choices incrementally as

the story progresses.

Retcon is a storylet system [1], meaning the

author writes the story in terms of a set of

narrative fragments. In retcon, the author also

tags fragments with the story-world assumptions

the fragments presuppose. The author also

provides constraints on what assumptions are

compatible with one another. If a fragment

introduces a werewolf, then we know we’re in a

horror story, or at least a supernatural story. If

some other fragment has established that we are

in hard science fiction, then the werewolf

fragment is an invalid continuation for that story.

As the story progresses, the system tracks the

assumptions that have been established and

removes incompatible fragments from

consideration.

Formalization

We will represent story states as sets of

assumptions about the story world in some logic.

Each successive beat of the story introduces new

assumptions about the story world, thus changing

the story state, and narrowing the space of

possible story worlds. A retcon story specifies:

• A logic for describing story state. We will

use the symbol 𝐿 to denote the logic’s

“language,” i.e. the set possible statements

in the logic.2

• A theory, 𝑇 ⊂ 𝐿, describing the

restrictions on possible story worlds.3

• A set of story fragments, 𝐹

• An assumption function, 𝐴: 𝐹 → 2𝐿,

assigning to each fragment 𝑓, a set of

story-world assumptions, 𝐴(𝑓).

We will give the details of the specific logic

used in retcon and the types of statements

supported for the theory and assumptions in the

implementation section, below. The remainder of

this section can be thought of as formalizing what

it means for something to be “retcon-like” before

getting into the specific version that’s currently

implemented.

Possible story worlds

Since 𝑇 is essentially a set of constraints on

valid story worlds, the class of possible story

worlds is the set of models of 𝑇. For any set of

statements 𝑆 ⊂ 𝐿, let ℳ(𝑆) denote its set of

possible models ℳ(𝑆) = { 𝑀|𝑀 ⊨ 𝑆 }. The set

of all possible story worlds is then ℳ(𝑇). Since

each successive fragment adds assumptions, it

narrows the possible story worlds.

Story states

In retcon, the story state at some point in the

writing/telling of a story is the set of story-world

assumptions in play at that moment. These

determine the set of possible story worlds at that

moment. If some set of fragments 𝑓1, … , 𝑓𝑛 have

been used in the story up to that point, then the

story state is the union of assumptions due to those

2 The language of a logic is the set of grammatical strings in the logic,
also known as its “well-formed formulae” or “WFFs.” Saying

something is a WFF doesn’t say anything about it being true or false.
3 A theory in logic parlance is just a set of statements in the logic so

𝑇 ⊂ 𝐿.

fragments: 𝐴(𝑓1) ∪ … ∪ 𝐴(𝑓𝑛). And the

remaining story states are then:4

ℳ(𝑇 ∪ 𝐴(𝑓1) ∪ … ∪ 𝐴(𝑓𝑛))

= ℳ(𝑇) ∩ ℳ(𝐴(𝑓1)) ∩ … ∩ ℳ(𝐴(𝑓𝑛))

Crucially, we will never have to compute ℳ

explicitly; we need only determine whether it is

empty for a given set of assumptions, and this can

be done using a SAT solver. If the solver fails,

then there are no possible story worlds, and the

assumptions are mutually contradictory.

Through abuse of notation, we will adopt use

the ◇ operator of modal logic to indicate

satisfiability/possibility. ◇𝑃 means “𝑃 is

possible”:

◇𝑃 ⇔ ℳ(𝑃) ≠ ∅

Algorithmically, ◇𝑃 simply means “the SAT

solver can find a model for 𝑃.”

World states

Some formalization of mutable world state is

generally necessary to prevent nonsensical beat

sequences. While such state is necessary, we do

not claim to have a better representation of

mutable state. We simply assume that there is:

• A set of possible world states, 𝑊. These

might be the models of some logical

theory or not; we don’t assume any

particular structure for world state.

• A precondition function, 𝑃: 𝐹 → 2𝑊,

indicating in which world states a given

fragment is valid

• A transition function, 𝛿: 𝐹 × 𝑊 → 𝑊

indicating how a given fragment updates

the world state.

Fragment validity

Again, the story consists primarily of a stock

of fragments. However, not all fragments will

make sense at a given point in the story.

Fragments can be ruled out either because their

world-state preconditions are invalid, or because

4 Note the equality here is not valid for stable-model semantics, so
this formalization would have to be modified to use answer-set

programming.

their assumptions are inconsistent with the current

story state (which is itself a set of assumptions).

A fragment 𝑓 ∈ 𝐹 is valid in story state 𝑠 ⊂ 2𝐿

and world state 𝑤 ∈ 𝑊, if and only if its

preconditions are satisfied and there is at least one

possible story world in which the current

assumptions and the fragment’s assumptions are

both valid:

𝑃(𝑓, 𝑤) ∧ ◇(𝑇 ∧ 𝑠 ∧ 𝐴(𝑓))

Basic algorithm

Retcon begins with an initial world state, 𝑖 ∈
𝑊, and an empty story state. It then iteratively

chooses a set of valid fragments, prompts the user

to choose one, and updates the world and story

state accordingly:

 𝑤 = 𝑖
 𝑠 = ∅

repeat until end of story

 𝐶 = { 𝑓 | 𝑃(𝑓, 𝑤) ∧ ◇(𝑇 ∧ 𝑠 ∧ 𝐴(𝑓))}

 Present some subset of 𝐶 to the player

 Player chooses some specific fragment 𝑓

 Print text of 𝑓

 𝑤 = 𝛿(𝑓, 𝑤)
 𝑠 = 𝑠 ∪ 𝐴(𝑓)

end

The test for ℳ being non-empty is equivalent

to a test of whether 𝑇 ∪ 𝑠 ∪ 𝐴(𝑓) is

satisfiable/consistent. It can therefore be tested

using a satisfiability solver.

Implementation

Retcon is implemented as an embedded

language in the Step programming language [14].

Stories are defined through a mixture of normal

Step code and special language features added by

retcon. The implementation presently runs in the

Unity game engine [15]. Satisfiability is tested

using CatSAT [16], which is a randomized

SAT/SMT solver that can run natively in Unity.

CatSAT isn’t an ideal choice for retcon, but it

works well enough for our purposes.

World state

World state is implemented using the Step’s

state-tracking features, which support both

conventional mutable variables and fluent

predicates that can be updated imperatively.

Updates are rolled back upon backtracking. For

more information, see [14].

Story state logic

Since we are using a SAT solver to test

satisfiability of world states, story states and

world theories must be reducible to finite Boolean

expressions. This means the underlying logic

cannot be full first-order logic. We limit the logic

to pseudo-Boolean constraints universally

quantified over some finite domain. This means

it is similar to ASP, but all models of classical

logic are allowed, not merely the so-called

“stable” models. In particular, the author defines:

• A specific set of possible story objects, 𝑈,

to reason over (characters, items,

locations, etc.)

• Specific types or collections of those

objects. These are used to quantify

variables over those types

• A specific set of predicates over those

objects

The logic has the following structure:

• Terms are then either constants (elements

of 𝑈) such as nana, joey, the_farm, or

variables: ?x, ?y, ?character. We do

not support term expressions.

• Atoms are therefore predicates applied to

these terms: [Loves nana, joey], [At
jaime ?location], etc. Atoms

containing no variables are called ground

atoms.

• Literals are atoms or negated atoms:

[Loves ?x nana], [Not [Loves ?x
nana]]. Similarly, ground literals are

literals containing no variables.

• If 𝐿1, … , 𝐿𝑛 are literals, then [Unique

𝐿1 … 𝐿𝑛] states that exactly one of the

literals must be true. [AtMost 𝑛

𝐿1 … 𝐿𝑛] states that at most 𝑛 may be true.

Other versions, such as AtLeast,

Exactly, etc. are also supported

• If 𝐶 and 𝐴1, … , 𝐴𝑛 are literals, then:

• 𝐶 ← 𝐴1 … 𝐴𝑛 means 𝐴1 ∧ … ∧ 𝐴𝑛 imply 𝐶

• 𝐶 ⇐ 𝐴1 … 𝐴𝑛 means 𝐴1 ∧ … ∧ 𝐴𝑛 imply 𝐶

but also that 𝐶 implies at least one

righthand side of a 𝐶 ⇐ expression.

• Prefixing any of the above statements with

a collection applied to a variable

universally quantifies that variable over

the collection. Thus:
 [Character ?x] [Loves ?x nana]
 means “everyone loves Nana.”

With those preliminaries, we can now state the

expressive capabilities of the current implemented

system:

• Story world constraints can be any of the

expressions above, provided all variables

are universally quantified over some

collection.

• Fragment assumptions can be any

(possibly empty) set of ground literals

and/or fully quantified literals. However,

they cannot be cardinality constraints or

implications.

Related Work

Although I am not aware of prior work on

dynamic story state, there have been several

papers that have used algorithms with similar

motivations to solve adjacent problems.

GME [10] reasons about multiple world states

in order to facilitate recovery from problematic

player actions in a planning-based story

framework. The ISR narrative planner [17] can

change its initial world state to improve story

generation.

AutoDread [18] uses a SAT system to guide

the player through a character design

questionnaire, removing potential answers that

contradict previously established facts or

removing questions entirely if their premises

contradict or are implied by established facts.

RoleModel [19] is a story generator that allows

the roles of characters within the story to be

specified at runtime, then uses answer set

programming [20] to choose instantiations of

story skeletons with those roles.

Benmergui’s Storyteller [21] is a narrative

puzzle game in which players are challenged to

complete a partially specified narrative to achieve

a specified narrative goal. The system uses

constraint satisfaction to dynamically adjust parts

of the narrative.

Several interactive narrative systems have

looked to logic programming to support

sophisticated character reasoning about world

state and social interactions. Versu [8] used a

bespoke logic to allow character not only to

choose actions but to render judgements about the

actions of other characters. The commercial game

City of Gangsters [22], [23] uses a more

conventional logic programming language but for

a large-scale simulation involving over a thousand

concurrent NPCs. Ceptre [24] uses linear logic to

reason about world state, but could also perhaps

be used to reason about dynamic story state.

Many interactive narrative systems work by

assembling stories from fragments [25]–[32].

These have been referred to as “storylet” or

“content selection” architectures. Kreminski and

Wardrip-Fruin offer a recent survey [1]. They

share some mechanism for defining fragments

that can generate text, a method for assigning

preconditions to them, and a method for choosing

a next fragment. The basic framework used in

retcon could be added to any of these systems; it

simply adds a new precondition mechanism to the

fragments. Alternatively, these architectures

could be implemented within retcon; it is agnostic

as to content selection and precondition

architecture.

The most common preconditions are so-called

story “qualities” [27]. These are state variables,

typically numeric, which can be set by fragments

and tested in preconditions. However other, more

elaborate, systems have been implemented,

including general logical queries against a

knowledge-base [25].

Content-selection algorithms range from

random [30] to A* pathfinding [33] and full

reactive planning [25].

Future work

Retcon uses a relatively simple logic. Some

surface restrictions can be ameliorated by

normalizing a superficially more expressive logic

into the existing logic. For example, the current

system only allows ground literals to be used as

fragment assumptions. However, a more complex

fragment assumption Φ can be supported simply

by substituting a proposition 𝑝 for it, and adding

the statement 𝑝 ↔ Φ to 𝑇. Thus far, our use cases

have not required this.

CatSAT is not an ideal choice of a SAT solver

for this application. It is optimized for generation

of random models within a small memory

footprint. Since retcon doesn’t even look at the

model that is generated, a CDCL SAT solver such

as Z3 [34] would be preferable. But again,

CatSAT has been sufficient for our use cases.

Another possibility would be to use an answer-

set solver, such as Clingo [35]. This has the

advantage of providing a high-performance solver

and a stronger logic, at the cost of more

complicated integration with the rest of the game,

and the need to generate the AnsProlog code from

whatever format the story is authored in. It would

also require redesigning the formalization given

in this paper, which assumes a monotonic logic.

Conclusion

Interactive narrative systems have focused

primarily on reasoning about world state. Retcon

demonstrates that it is possible to build story

systems that dynamically manipulate the core

assumptions of the story world, allowing the

player some agency in choosing them.

The boundary between story state and world

state is somewhat artificial. Any part of the world

state that doesn’t change during the story can be

considered story state. Conversely most story

state could be incorporated as an aspect of world

state that simply doesn’t change during the story.

In principle, this kind of constraint reasoning

could also be done over world state. However,

general constraint-reasoning over state histories

would be extremely expensive. Constraint

reasoning over story state is much more practical

because it is quasi-static.

References

[1] M. Kreminski and N. Wardrip-Fruin,

“Sketching a Map of the Storylets Design

Space,” in International Conference on

Interactive Digital Storytelling (ICIDS-

18), 2018, pp. 160–164, doi: 10.1007/978-

3-030-04028-4.

[2] M. Frost and D. Lynch, “Twin Peaks,”

CBS Television Distribution, USA, 1990.

[3] G. Lucas, Star Wars. USA: 20th Century

Fox, 1977.

[4] J. Ryan, “Curating Simulated

Storyworlds,” University of California

Santa Crus, 2018.

[5] Maxis, “The Sims 3.” 2009.

[6] T. Adams and Z. Adams, “Slaves to

Armok: God of Blood Chapter II: Dwarf

Fortress.” Bay 12 Games, 2006.

[7] M. Mateas and A. Stern, “A Behavior

Language for Story-Based Believable

Agents,” IEEE Intell. Syst., 2002, doi:

10.1109/MIS.2002.1024751.

[8] R. Evans and E. Short, “Versu - A

Simulationist Storytelling System,” IEEE

Trans. Comput. Intell. AI Games, vol. 6,

no. 2, pp. 113–130, 2014.

[9] S. G. Ware and R. M. Young, “CPOCL: A

Narrative Planner Supporting Conflict,”

2011.

[10] J. Robertson and R. M. Young,

“Interactive Narrative Intervention Alibis

through Domain Revision,” AIIDE, 2015.

[11] L. Balsera, B. Engard, J. Keller, R.

Macklyn, and M. Olsen, Fate Core. Evil

Hat Productions, 2013.

[12] R. Laws, “GUMSHOE System Reference

Document,” London, UK, 2013. [Online].

Available:

http://site.pelgranepress.com/index.php/th

e-gumshoe-system-reference-document/.

[13] D. Kwan and D. Scheinert, Everything

Everywhere All At Once. A24, 2022.

[14] I. Horswill, “Step: A Highly Expressive

Text Generation Language,” 2022.

[15] Unity Technologies, “Unity 3D.” San

Francisco, CA, 2004.

[16] I. Horswill, “CatSAT: A Practical,

Embedded, SAT Language for Runtime

PCG,” 2018.

[17] M. Riedl and R. M. Young, “Open-World

Planning for Story Generation,” 2005.

[18] I. Horswill and E. Robison, “What’s the

Worst Thing You’ve Ever Done at a

Conference? Operationalizing Dread’s

Questionnaire Mechanic,” in AIIDE-18

Workshop on Experimental AI in Games

(EXAG-18), 2018, no. Horswill.

[19] S. Chen, A. M. Smith, A. Jhala, N.

Wardrip-Fruin, and M. Mateas,

“RoleModel: Towards a Formal Model of

Dramatic Roles for Story Generation,”

2010.

[20] V. Lifschitz, Answer Set Programming,

1st ed. Springer, 2019.

[21] D. Benmergui, “Storyteller,” 2013.

[22] R. Zubek and M. Viglione, “City of

Gangsters.” Kasedo Games, 2021.

[23] R. Zubek, I. Horswill, E. Robison, and M.

Viglione, “Social Modeling via Logic

Programming in City of Gangsters,” 2021.

[24] C. Martens, “Programming Interactive

Worlds with Linear Logic,” Carnegie

Mellon University, 2015.

[25] M. Mateas and A. Stern, “Façade.” 2005.

[26] A. Kennedy, “Fallen London.” Failbetter

Games, London, 2009.

[27] A. Kennedy, “StoryNexus.” Failbetter

Games, London, 2009.

[28] D. Sharp, “The King of Chicago.”

Cinemaware, 1987.

[29] A. A. Reed and J. Garbe, “The Ice Bound

Concordance.” Self-published, Santa

Cruz, California, 2016.

[30] F. Alliot, “Reigns.” Devolver Digital,

Austin, TX, 2016.

[31] J. Garbe, M. Kreminski, B. Samuel, N.

Wardrip-fruin, and M. Mateas,

“StoryAssembler : An Engine for

Generating Dynamic Choice-Driven

Narratives,” in Foundations of Digital

Games (FDG), 2019, p. August.

[32] R. Colantonio, “Weird West.” Devolver

Digital, Austin, TX, 2022.

[33] E. Short, “NPC Dialog Systems,” IF

Theory Reader. > Transcript On Press,

Boston, MA, pp. 331–358, 2011.

[34] L. De Moura and N. Bjørner, “Z3: An

efficient SMT Solver,” 2008, doi:

10.1007/978-3-540-78800-3_24.

[35] M. Gebser, R. Kaminski, B. Kaufmann,

M. Ostrowski, T. Schaub, and S. Thiele,

“A User ’ s Guide to gringo , clasp , clingo

, and iclingo ∗,” Potsdam, 2010.

